

Catalysis Today 45 (1998) 135-138

Two conversion maxima at 373 and 573 K in the reduction of nitrogen monoxide with hydrogen over Pd/TiO₂ catalyst

Atsushi Ueda^{a,*}, Takayuki Nakao^b, Masashi Azuma^b, Tetsuhiko Kobayashi^a

^aOsaka National Research Institute, AIST, Midorigaoka 1-8-31, Ikeda, Osaka 563-8577, Japan ^bDepartment of Applied Chemistry, Osaka Institute of Technology, Omiya 5, Asahi-ku, Osaka 535-1855, Japan

Abstract

Supporting Pt and Pd catalysts have been examined for the reduction of NO with H_2 in the presence of oxygen and moisture. All catalysts showed a conversion maximum in the NO reduction at around 373 K. An additional conversion maximum was found to appear at around 573 K over several metal oxides supporting Pd, and Pd/TiO₂ gave the highest conversion at around 573 K among the catalysts tested. In the reaction at 373 K, NO might be reduced directly by H_2 both on Pt and Pd catalysts to give H_2 and H_2 . H_2 At the conversion maximum of the Pd/TiO₂ catalyst at 575 K, however, in situ generated H_2 seems to react with H_2 . H_3 1998 Elsevier Science B.V. All rights reserved.

Keywords: Nitrogen monoxide; Reduction; Hydrogen; Palladium; Titania

1. Introduction

Ammonia and light hydrocarbons have been intensively studied as reductants for the catalytic removal of NO from exhaust gases. This is because these reductants can selectively react with NO even in the presence of O₂. Hydrogen can act as a reductant of NO on noble metal catalysts if the concentration of O₂ is low in the exhaust gases [1–3]. However, only few attempts have been reported for the NO reduction by H₂ in oxygen-rich conditions. This is because hydrogen is easily consumed in the simple combustion with O₂ [4,5]. Recently, zeolite supporting Pt has been reported to show a catalytic activity to this reaction at around 373 K [6].

Hydrogen, as well as light hydrocarbons and CO, is often contained in exhaust gases. It is, therefore, worthy to explore catalysts for the reduction of NO with H_2 in oxygen-rich conditions. In this study, metal oxides supporting Pt and Pd have been examined in the NO reduction with H_2 in order to compare the effect of support oxides on the reaction selectivity.

2. Experimental

The metal oxides used as supports were titania (Japan Aerosil, P-25, anatase with a specific surface area of $50 \text{ m}^2 \text{ g}^{-1}$), alumina (JRC-ALO7, a reference catalyst of the Catalysis Society of Japan, γ -Al₂O₃ with a specific surface area of $174 \text{ m}^2 \text{ g}^{-1}$), silica (silica gel 60 extra pure, Merk, with a specific surface area of $400 \text{ m}^2 \text{ g}^{-1}$), and magnesia (Ube Industries,

^{*}Corresponding author. Tel.: +81-727-51-9656; fax: +81-727-51-9630; e-mail: ueda@onri.go.jp

MgO with a specific surface area of ca. 100 m² g⁻¹). The reagent grade Pd(NO₃)₂ and platinum acetylacetonate (Kishida) were used.

The support oxides were impregnated with aqueous solutions of palladium and platinum using a rotary evaporator. The precursors obtained were dried under vacuum for 18 h, and then calcined in air at 773 K for 5 h. The X-ray diffraction pattern of each sample before and after the reaction was measured using a Rigaku X-ray powder diffractometer (RINT 2000).

Catalytic activity measurements were carried out by using a fixed-bed flow reactor. A sample (300 mg) was placed in a quartz tube, heated to 573 K in 30 min in a stream of He at a rate of 100 cm³ min⁻¹, and then was kept at 573 K for 30 min. The reactant gas mixture containing NO 1000 ppm, H₂ 3000 ppm, O₂ 5.0 vol%, and H₂O 10 vol% in He background was passed through the catalyst bed at a flow rate of 100 cm³ min⁻¹ unless otherwise stated. The catalyst temperature was monitored with a quartz-tube covered thermocouple contacting with the inlet part of the catalyst bed and was raised stepwise and maintained for 2 h at each temperature.

Reactants and products were analyzed with three gas chromatographs and a NO_x meter. Oxygen and nitrogen were analyzed by a gas chromatograph (GC) (Yanaco G-2800) equipped with a thermal conductivity detector (TCD) and a column of molecular sieve 13X (5 m) kept at 313 K. Nitrous oxide (N₂O) was analyzed by a GC (Yanaco G-2800) equipped with TCD and a column of active carbon (3 m) kept at 373 K. Hydrogen was analyzed by a GC (Shimadzu GC-8A) equipped with TCD and a column of molecular sieve 13X (3 m) kept at 313 K. Nitrogen oxides (NO and NO₂) were analyzed with a chemiluminescent NO_x meter (Yanaco CLS-88US). Calibration was done with a standard gas containing known concentrations of the components.

3. Results and discussion

The reduction of NO by H₂ was performed over metal oxides supporting Pt and Pd. Fig. 1 shows typical results of the NO conversion as a function of reaction temperature. The selectivity to the products is summarized in Table 1. Most of the catalysts tested showed the conversion maxima at around 373 K. The

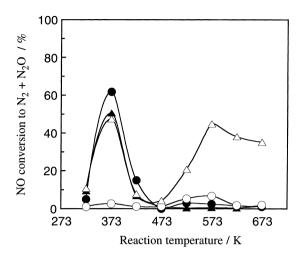


Fig. 1. Conversion of NO to N_2+N_2O as a function of reaction temperature in the reduction of NO by H_2 over Pd and Pt catalysts. (\bigcirc) Pd/Al₂O₃; (\triangle) Pd/TiO₂; (\bigcirc) Pt/Al₂O₃; (\triangle) Pt/TiO₂. The loading amount of Pd or Pt was 1 wt%. Reaction gas: 1000 ppm NO, 3000 ppm H_2 , 5 vol% O₂, 10 vol% H_2O in He background at a space velocity of 20 000 h⁻¹ ml g-catalyst⁻¹.

Table 1 Conversions of NO to N_2 and N_2O in the reduction of NO by H_2 over Pd and Pt catalysts (the loading amount of Pt or Pd was 1 wt%; reaction gas: 1000 ppm NO, 3000 ppm H_2 , 5 vol% O_2 , and 10 vol% H_2O with the balance He at a space velocity of 20 000 h^{-1} ml g-catalyst⁻¹)

Catalyst	Conversion of NO at 373 K to		Conversion of NO at 573 K to	
	N ₂ (%)	N ₂ O (%)	N ₂ (%)	N ₂ O (%)
Pd/TiO ₂	21.7	25.8	27.4	17.5
Pd/Al ₂ O ₃	2.7	0	2.1	0
Pd/MgO	7.8	5.4	8.1	3.7
Pd/SiO ₂	4.5	2.3	10.2	5.4
Pt/TiO ₂	10.5	40.1	0.6	0
Pt/Al ₂ O ₃	6.6	55.6	2.8	0
Pt/MgO	5.4	38.2	1.4	0

 Pt/Al_2O_3 catalyst brought about the highest conversion of NO at this temperature, where the main product was N_2O . In this temperature region, the catalysts supporting Pt afforded higher conversions than those on the Pd catalysts. The conversion of H_2 reached 100% at temperatures higher than 423 K on all catalysts tested. Consumption of H_2 in the reaction with O_2 is one of the plausible explanations to a

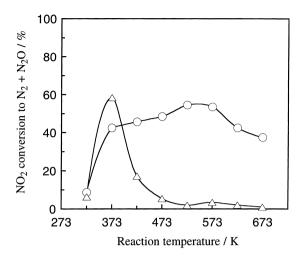


Fig. 2. Conversion of NO_2 to N_2+N_2O as a function of reaction temperature in the reduction of NO_2 by H_2 over Pd/TiO_2 and Pt/Al_2O_3 catalysts. (\bigcirc) Pd/TiO_2 ; (\triangle) Pt/Al_2O_3 . The loading amount of Pd or Pt was 1 wt%. Reaction gas: 1000 ppm NO_2 , 3000 ppm H_2 , 5 vol% O_2 , and 10 vol% H_2O in He background at a space velocity of 20 000 h^{-1} ml g-catalyst⁻¹.

sudden drop in the NO conversion at temperatures higher than 373 K.

On the catalysts supporting Pd, however, an additional conversion maximum was observed at around 573 K (Fig. 1), showing higher selectivities to N_2 than to N_2O (Table 1). The Pd/TiO₂ catalyst exhibited the highest activity at 573 K among the supporting Pd catalysts tested.

The reduction of NO_2 , in place of NO, was compared between the Pd/TiO_2 and the Pt/Al_2O_3 catalysts. Fig. 2 shows the conversion of NO_2 as a function of reaction temperature. Even if NO_2 is used, the H_2 consumption by O_2 on Pt/Al_2O_3 seems to take place preferentially at temperatures higher than 373 K. On the other hand, the Pd/TiO_2 catalyst afforded a very widened window of the NO_2 conversion. This strongly suggests that the reduction of NO_2 by H_2 can proceed on Pd/TiO_2 in competition with the simple combustion of H_2 even at high temperatures.

The oxidation of NO by O₂ to NO₂ was tested on the Pd/TiO₂ and the Pt/Al₂O₃ catalysts. Results are shown in Fig. 3. Over both catalysts, the formation of NO₂ was observed at temperatures higher than 423 K, and the conversion maxima appeared at 573 K. The thermodynamic limitation brought about the lower NO₂

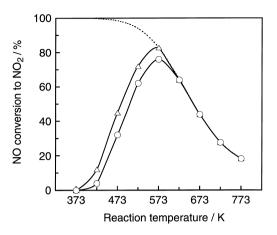


Fig. 3. Conversion of NO to NO₂ over Pd/TiO₂ and Pt/Al₂O₃ catalysts as a function of reaction temperature. (\bigcirc) Pd/TiO₂; (\triangle) Pt/Al₂O₃; dotted line denotes the equilibrium curve in the oxidation of NO by O₂. The loading amount of Pd or Pt was 1 wt%. Reaction gas: 1000 ppm NO, 5 vol% O₂, and 10 vol% H₂O in He background as a space velocity of 20 000 h⁻¹ ml g-catalyst⁻¹.

Table 2
Rate for NO+H₂, NO₂+H₂, and O₂+H₂ reaction on Pd/TiO₂ and Pt/Al₂O₃ catalysts (the loading amount of Pd or Pt was 1 wt%; NO+H₂: 1000 ppm NO and 3000 ppm H₂ in He background; NO₂+H₂: 1000 ppm NO₂ and 3000 ppm H₂ in He background; O₂+H₃: 5.0 vol% O₂ and 3000 ppm H₃ in He background)

Reaction	Rate on Pd/TiO ₂ at 573 K (mol s ⁻¹ g-cat ⁻¹)	Rate on Pt/Al ₂ O ₃ at 573 K (mol s ^{$^{-1}$} g-cat ^{$^{-1}$})
NO+H ₂ NO ₂ +H ₂ O ₂ +H ₂	6.1×10^{-6} 4.1×10^{-5} 2.5×10^{-5}	$ 2.1 \times 10^{-5} \\ 3.2 \times 10^{-5} \\ 6.4 \times 10^{-4} $

yields at higher temperatures. The temperature-dependency of the NO_2 formation is similar to that of the NO reduction on Pd/TiO₂ at temperatures between 473 and 673 K (Fig. 1).

Rates of elementary reactions were measured on the Pd/TiO_2 and the Pt/Al_2O_3 catalysts at 573 K. The results are summarized in Table 2. On the Pd/TiO_2 catalyst, the reduction of NO_2 by H_2 is faster than the O_2+H_2 reaction, but the reduction of NO by H_2 is slower than the O_2+H_2 reaction. This indicates that the NO_2 formation is indispensable for the selective reduction of NO_x on Pd/TiO_2 . Appearance of the two conversion maxima at 373 and 573 K over the Pd catalysts should be due to a change of the reaction

paths between the direct reduction of NO by H_2 and the reduction of in situ generated NO_2 by H_2 . In the case of the Pt/Al_2O_3 catalyst, the rate of NO_2 reduction by H_2 is comparable to that on Pd/TiO_2 , and is faster than the reduction of NO by H_2 . However, the combustion of H_2 with O_2 is much faster than the reaction between NO_2 and H_2 . This must be the reason of the poor selectivity of Pt/Al_2O_3 to the NO_x reduction at around 573 K, although NO_2 can be formed on this catalyst.

The XRD measurements revealed that Pt exists as metallic state in the Pt catalysts but PdO was observed in the Pd catalysts before and after the reaction. The difference in the oxidation state of Pt and Pd might cause the large difference in the rate of H_2 consumption by O_2 . Further study is needed to clarify the role of TiO_2 as a suitable support for PdO.

4. Conclusion

It was found that two conversion maxima appeared at 373 and 573 K in the reduction of NO by H_2 over

supporting Pd catalysts. The Pd/TiO₂ catalyst exhibited the highest activity at 573 K among the supporting Pd catalysts tested. The appearance of two conversion maxima on the Pd/TiO₂ catalyst can be explained by a switch of the reaction path; a direct reduction of NO by H₂ at around 373 K and a reduction of in situ generated NO₂ by H₂ at around 573 K. Although NO₂ is also formed on Pt/Al₂O₃ at high temperatures, the reduction of NO₂ by H₂ is difficult to take place in preference to the H₂ combustion on this catalyst.

References

- R.M. Heck, R.J. Farrauto, Catalytic Air Pollution Control Commercial Technology, van Nostrand Reinhold, New York, 1995, p. 1.
- [2] Y. Li, J.N. Armor, J. Catal. 150 (1994) 376.
- [3] T.E. Hoost, K.A. Laframboise, K. Otto, J. Catal. 136 (1982) 123
- [4] M. Iwamoto, H. Takeda, Catal. Today 27 (1996) 71.
- [5] R. Burch, P.J. Millington, A.P. Walker, Appl. Catal. B 4 (1994) 64.
- [6] M. Fukui, K. Yokota, Shokubai (Catalysts and Catalysis) 36 (1994) 160.